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Abstract Our study examines the efficacy of Computer

Assisted Scoring (CAS) of open-response text relative to

expert human scoring within the complex domain of evo-

lutionary biology. Specifically, we explored whether CAS

can diagnose the explanatory elements (or Key Concepts)

that comprise undergraduate students’ explanatory models

of natural selection with equal fidelity as expert human

scorers in a sample of [1,000 essays. We used SPSS Text

Analysis 3.0 to perform our CAS and measure Kappa

values (inter-rater reliability) of KC detection (i.e., com-

puter–human rating correspondence). Our first analysis

indicated that the text analysis functions (or extraction

rules) developed and deployed in SPSSTA to extract

individual Key Concepts (KCs) from three different items

differing in several surface features (e.g., taxon, trait, type

of evolutionary change) produced ‘‘substantial’’ (Kappa

0.61–0.80) or ‘‘almost perfect’’ (0.81–1.00) agreement. The

second analysis explored the measurement of human–

computer correspondence for KC diversity (the number of

different accurate knowledge elements) in the combined

sample of all 827 essays. Here we found outstanding cor-

respondence; extraction rules generated using one prompt

type are broadly applicable to other evolutionary scenarios

(e.g., bacterial resistance, cheetah running speed, etc.). This

result is encouraging, as it suggests that the development of

new item sets may not necessitate the development of new

text analysis rules. Overall, our findings suggest that CAS

tools such as SPSS Text Analysis may compensate for

some of the intrinsic limitations of currently used multiple-

choice Concept Inventories designed to measure student

knowledge of natural selection.
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Introduction

Recent reform documents emphasize that STEM education

must place greater emphasis on the teaching, learning, and

assessment of critical content or ‘‘core ideas’’ (NRC 2001,

2007). These reform documents also highlight the urgent

need for assessment tools that harness advances in tech-

nology and are guided by cognitive models of progression

towards competence (NRC 2007). Development of such

assessment tools is particularly important for (1) revealing

critical junctures in the development of student conceptual

understanding and (2) measuring the instructional efficacy

of teaching such core ideas. In line with these reform

documents, our study explores a central problem in STEM

education—assessing students’ cognitive models of natural

selection—that must be addressed in order for substantial

progress to be made in the teaching and learning of this

extremely important but greatly misunderstood ‘‘core idea’’

in biology.

Despite the unequivocal recognition that natural selec-

tion is a ‘‘core idea’’ in the biological sciences, learners at

all levels of the educational hierarchy throughout the

world—from high school to medical school, from America

to New Zealand—are characterized by low levels of
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understanding of natural selection, as well as myriad mis-

conceptions (e.g., Grose and Simpson 1982; Brumby 1984;

Clough and Wood-Robinson 1985; Zimmerman 1987;

Bishop and Anderson 1990; Demastes et al. 1995; Dagher

and BouJaoude 1997; Sinatra et al. 2003; Newport 2004;

Nehm and Reilly 2007; Nehm and Schonfeld 2008, 2010

Nehm et al. 2010a, b). The increasing importance of natural

selection within many fields of science—not just biology—

is paradoxically coupled with persistent public confusion

about it. Consequently, much work has focused on the

teaching and learning—but not assessment—of evolution-

ary ideas (Nehm 2006; Donnelly and Boone 2007).

The development and rigorous evaluation of instruments

that measure knowledge of, and misconceptions about,

natural selection in learners of different ages and educa-

tional backgrounds remains a comparatively peripheral

focus of evolution education research (Nehm 2006). This

dearth of attention to assessment makes evaluation of the

effectiveness of national and state standards, as well as

particular pedagogical strategies used to teach natural

selection, difficult if not impossible. The little work that

has been done in recent years relating to evolution

knowledge measurement has been directed at the devel-

opment of multiple-choice Concept Inventories (CI) (for a

review, see D’Avanzo et al. 2008). CIs have been

increasingly used to measure student knowledge in many

content areas, not just natural selection (see Liu 2010 for

many examples). Given their practical nature (e.g., small

item sets that are easy to score) CI development and use

has become popular in STEM education. Nevertheless,

many CIs have limitations that may be compensated for

using new technological tools.

Concept Inventories in Science Education

The growing popularity of CI development and use in the

sciences may at first glance call into question the need for

other formats and methods, such as open-response Com-

puter Assisted Scoring (D’Avanzo et al. 2008). In at least

some instances, however, so-called Concept Inventories are

not designed to measure in any meaningful sense student

understanding of a concept (such as natural selection;

Nehm and Schonfeld 2010). Rather, many CIs are check-

lists of disarticulated fragments of student thinking about a

range of concepts and alternative conceptions across very

different problem types. Moreover, such problem types are

often characterized by an amalgamation of very different

contexts and surface features (Nehm and Schonfeld 2010;

Chi et al. 1981). Furthermore, CIs nearly always offer

concise menus of very limited answer choices. But just as

perusing a restaurant menu may reveal that your favorite

entre is excluded, CIs may not offer students’ true prefer-

ences. Likewise, even if students’ two ‘‘favorite dishes’’

are on the menu—a healthy entre and a unhealthy des-

sert—typically they are only permitted to choose one

option, despite the well established finding that many stu-

dents—in some cases majorities—harbor both accurate and

inaccurate ideas about a particular concept or problem

(Nehm and Reilly 2007; Ha and Cha 2009; Nehm and Ha

2011; Nehm et al. 2009). Consequently, CIs in many cases

are incapable of providing a holistic or authentic snapshot

of student understanding of a concept; that is, what food

choices they would select to compose a meal. Rather, CIs

often reveal a hodgepodge of accurate and contextually

inaccurate knowledge elements constrained by the options

provided (Nehm and Schonfeld 2010).

But there is a more serious concern with some CIs that

do attempt to target a particular concept or causal theory

(e.g., natural selection). Even if such CIs were able to

validly measure the elements of student thinking in com-

parable contexts, evidence indicative of knowing all of the

‘‘pieces’’ or elements of a causal theory does not neces-

sarily provide evidence about how (or if) students think

these elements work together (Resnick and Resnick 1992).

That is, CIs may not reveal students’ abilities in regard to

the degree to which they can assemble the pieces of a

concept into a coherent and functional explanatory

structure.

Moreover, even if such CIs could measure students’

abilities to integrate fragmented knowledge elements, such

abilities would not necessarily be indicative of whether

students can actually apply their knowledge of a concept to

a particular context or problem. Thus, as noted by Nehm

and Schonfeld (2010), science educators should be less

interested in CIs that can only reveal isolated fragments of

student thinking and be more interested in instruments that

can reveal how students choose to assemble and employ

these elements in explanatory models across different

contexts (e.g., in the classroom and in the ‘‘real world’’).

Finally, the newly proposed Framework for Science

Education (Alberts 2010) has identified several so-called

‘‘critical strands’’ that have been missing from science

education and are in urgent need of curricular integration.

These include: ‘‘generating and evaluating scientific evi-

dence and explanations, understanding the nature and

development of scientific knowledge, and participating in

scientific practices and discourse.’’ (Alberts 2010:491).

Notably, extant multiple-choice CIs are unable to assess

these core aspects of scientific practice, particularly gen-

erating scientific explanations. Constructed response

assessments, however, may be suitable to this task.

Constructed Response Solves Some CI Constraints

Constructed response instruments may help to solve some

(but not all) of the intrinsic constraints of extant CIs in
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evolutionary biology. When confronted with a prompt

designed to elicit an explanation of how evolutionary

change has occurred, interviews with students indicate that

they do indeed consider such problems to require a causal

explanation, which they subsequently provide (Nehm and

Schonfeld 2008). Furthermore, such interviews demon-

strate strong associations with written constructed-response

answers (Nehm and Schonfeld 2008). Such written

responses therefore provide insights into: (1) which

knowledge elements students consider to be important to

explain a phenomenon (as opposed to the selection of a

prescribed ‘‘either-or’’ menu of options); (2) how students

assemble these elements into an explanation; and (3) how

the explanation is applied to the context or situation rep-

resented in the item (Kirsh 2009; Nehm and Ha 2011).

Consequently, some open-response instruments have been

shown to display greater correspondence to clinical inter-

views than multiple-choice CIs (Nehm and Schonfeld

2008, 2010).

Bridgeman (1992:253) outlined several additional rea-

sons why constructed-response formats may minimize the

‘‘false positives’’ noted in some multiple-choice assess-

ments (e.g., Nehm and Schonfeld 2008): (1) they reduce

measurement error associated with random guessing;

(2) they eliminate unintended corrective feedback, that is,

if an expected incorrect answer is not present in the menu

options, the student knows that a change in strategy is

required to correctly solve the problem; and (3) they pre-

vent students from working backwards from the answers.

Consequently, a large body of psychometric research

argues for the inclusion of constructed response items in

knowledge measurement (e.g., Traub and MacRury 1990;

Morgan and Maneckshana 1996; Kuechler and Simkin

2004).

While many science educators undoubtedly recognize

some of the intrinsic benefits of open-response instruments

in knowledge assessment, many reasons account for their

uncommon use with large populations. These include:

(1) grading time and cost; (2) scorer training costs; (3) the

complexity of rubric development and evaluation;

(4) inconsistent scores among raters due to differences in

scorer expertise and subjectivity; (5) grading fatigue; and

(6) responses that may be difficult to interpret. Fortunately,

new tools and technologies, collectively known as Com-

puter Assisted Scoring, are capable of solving many of the

aforementioned problems.

Computer Assisted Scoring

Announcements of the impending revolution in computer

assisted scoring (CAS)—begun in the 1960s—are justified

at long last (Page 1966; Yang et al. 2002; Shermis and

Burstein 2003). Several CAS tools, notably C-rater

(Sukkarieh and Bolge 2008), E-rater (Burstein 2003),

Intelligent Essay Assessor (Landauer et al. 2001), and

SPSS Text Analysis (SPSS Inc 2006), are being employed

with increasing frequency in educational contexts. More-

over, CAS and related tutoring systems are beginning to

administer, capture, and analyze more advanced perfor-

mance skills in large populations, particularly in medical

fields and in higher education (Clauser et al. 2000; Mislevy

et al. 2002; Braun et al. 1990).

The growing use of CAS tools in many academic dis-

ciplines is driven in part by the numerous disadvantages

that characterize human scoring of constructed response

items, most notably the high costs (in terms of scoring time

and expert training) and delayed feedback to test takers.

Furthermore, human scoring is problematic for many rea-

sons, including grading fatigue, inconsistent training and/or

background knowledge of graders, and the intrinsic sub-

jectivity associated with interpretation (Yang et al. 2002).

Consequently, the development CAS has been justified by

its purported ability to compensate for the weaknesses of

human scoring by producing greater reproducibility,

objectivity, reliability, and efficiency (Williamson et al.

1999; Powers et al. 2002a, b). Finally, the repeatedly

documented comparability of computer-administered and

paper and pencil administered test scores provides further

justification for making use of such readily available

electronically formatted responses (Keith 2003; Kingston

2009).

The persistent question asked of CAS systems is whe-

ther they can measure written responses as accurately as

human scorers. The validation of CAS methods has been

approached from many angles. The most straightforward

approach quantifies levels of agreement between CAS

scores and the scores generated by trained experts.

Agreement may be quantified using the percentage of exact

or adjacent agreement between CAS scores and human

expert-generated scores. These measures have their disad-

vantages, however; most notably, they are influenced by

the number of cases analyzed and score distributions (Yang

et al. 2002). Consequently, Cohen’s Kappa has been

employed to quantify levels of agreement between CAS

scores and expert scores because it compensates for chance

inter-rater agreements (Bejar 1991). Other measures have

also been used, such as the creation of average judgment

scores (as estimates of ‘‘true scores’’) or consensus scores

(among experts). Correlations among rating scores from

many experts (or methods) have also been employed in the

literature (Yang et al. 2002). Overall, many approaches

have been used to test the efficacy of CAS systems.

Regardless of the validation method, CAS system-gen-

erated scores have been repeatedly found to display robust

agreement patterns with expert raters. Beginning with

the Project Essay Grade (PEG) system (Page 2003),
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researchers have found agreement levels between human

and computer scoring [0.80. Specifically, Page found that

‘‘…the PEG program predicted human judgment well—

better even than three human judges’’ (Page 2003). Work

with Intelligent Essay Assessor has likewise demonstrated

outstanding correspondence with human raters: ‘‘IEA-

generated scores agreed better with ratings given by people

with higher rather than lower expertise.’’ (Yang et al. 2002,

p. 402). Indeed, across exams ‘‘…IEA score[s] agreed with

single readers as well as single readers agreed with each

other’’ (Landauer et al. 2003). Such promising findings

continue with more widely used commercial projects, such

as Educational Testing Service’s C-rater (Sukkarieh and

Bolge 2008).

Despite such promising findings, it is important to note

that statistical agreement does not necessarily indicate that

what has been measured is meaningful; that is, high levels

of agreement on a superficial or peripheral learning target

would be of minor significance to educators (Landauer

et al. 2000). Furthermore, agreement metrics are sensitive

to the ‘‘grain size’’ of analysis; fine-grained scoring is

much less likely to display high levels of agreement rela-

tive to whole-essay score agreements. Thus, both construct

attributes and scale emerge as important considerations that

must be attended to in the interpretation of computer–

human correspondence scores Shermis and Burstein

(2003).

The validation of computer assisted scoring systems has

received increasing attention given their expanding role in

educational evaluation. In brief, contemporary conceptu-

alizations of validity involve the ‘‘representativeness and

relevance of the test scores to the construct intended to be

measured’’ (Yang et al. 2002:404). Validation evidence for

CAS, according to Yang et al. (2002), may be gathered

using empirical data, expert judgments, relevant literature,

and logical analysis. Methodologically, we employ all of

these approaches in our study of the efficacy of natural

selection knowledge measurement using a CAS system

(see below). Overall, however, the establishment of

human–human agreement, coupled with corresponding

human–computer score agreement, remains as one of the

core approaches for validity evidence for CAS metrics

(Yang et al. 2002).

The purpose of a test and the intended uses of its scores

must also be considered as a component of validity

(AERA, APA, and NCME 1999). High-stakes test scores—

e.g., determining whether a biology teacher should be

certified to teach or not—based on CAS scores alone would

be unlikely to be considered valid despite their very high

levels of agreement with human scorers (e.g., Kappas

0.85); in contrast, comparable agreement values on a CAS

scored test designed for formative purposes—such as

guiding instruction—may be interpreted as valid despite

similar Kappa values as above. Thus, levels of agreement

must be considered in light of the purpose for which the

test scores will be put. Our work on evolutionary knowl-

edge measurement is anchored in the pursuit of formative

diagnosis of student thinking about natural selection, and

this purpose must frame our data, evidence, and

interpretations.

Measuring Knowledge of Natural Selection

The construct of natural selection—and its constituent

elements (or ‘‘Key Concepts’’)—is generally well estab-

lished (Nehm and Schonfeld 2008). Nevertheless, there is

some variance in the evolutionary literature regarding the

number of ‘‘essential’’ elements of this construct (Nehm

and Schonfeld 2010). At a minimum, three Key Concepts

(KCs) are considered necessary and sufficient to explain

natural selection: (a) the presence and causes of variation

(mutation, recombination, sex); (b) the heritability of var-

iation; (c) the differential reproduction and survival of

individuals (Lewontin 1978:220; Pigliucci and Kaplan

2006:14; Patterson 1978:1; Endler 1992:220). Many other

authors acknowledge the importance of: (d) hyper-fecun-

dity or ‘overproduction’ of offspring; (e) limited resources,

(f) competition, and (g) a change in the distribution of

produced phenotypic/genotypic variation in the next gen-

eration (Patterson 1978; Endler 1992). One group of

authors goes even further, and expands this list of

‘‘essential’’ elements to include ‘‘population stability’’ and

‘‘speciation’’ (Anderson et al. 2002). Some debate also

exists as to whether ‘‘speciation’’ is a necessary element of

natural selection (e.g., Gould 2002).

Our analyses consider these opposing viewpoints

regarding the content validity of natural selection by

studying what we term Key Concepts and Core Concepts

of natural selection. Key concepts include all seven of the

most commonly accepted elements (1–7, above) whereas

Core Concepts of natural selection include the three Key

Concepts considered necessary and sufficient to explain

natural selection (i.e., the presence and causes of variation;

the heritability of variation; and the differential reproduc-

tion and survival of individuals). We leave ‘‘population

stability’’ and ‘‘speciation’’ out of our analyses, although

this omission may have little relevance given that in pre-

vious published studies, 0% of student samples [n [ 100]

ever used these elements in their explanations (see Nehm

and Reilly 2007; Nehm and Schonfeld 2007, 2008). Suffice

it to say that our analyses encompass the three ‘‘essential’’

elements of natural selection along with the most widely

accepted additional elements denoted by evolutionary

biologists (e.g., Patterson 1978; Endler 1992; Gould 2002).

Overall, then, our study of the efficacy of a CAS system

emphasizes the measurement of core elements of content
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(the construct of natural selection) recognized by evolution

experts (Lewontin 1978; Pigliucci and Kaplan 2006:14;

Patterson 1978; Endler 1992).

Methods

Sample and Data

Our sample of constructed responses was gathered using an

online response system built within our university course

management system. Responses were captured from

undergraduate student participants enrolled in the intro-

ductory biology sequence for majors. Demographically, the

sample was approximately 80% White (non-Hispanic) and

20% minority (African American, Asian, Hispanic, Native

American), 60% female, and with an average age of

20 years. The sample includes responses from 2 years:

2008 and 2009. Students received extra course points for

choosing to complete an instrument (pre- and post-course)

containing three evolutionary prompts about bacterial

resistance, cheetah running speed, and salamander sight

that have been widely used in the literature (see Bishop and

Anderson 1990; Nehm and Reilly 2007). Participation rates

were [75%; 812 sufficiently complete student responses

were gathered from the 2008 sample and 428 from the

2009 sample.

Human Scoring

Students’ evolutionary explanations were atomized into a

series of units using a scoring rubric established in prior

research and validated using extended clinical interviews

(for details, see Nehm and Schonfeld 2007; 2008). The

elements extracted from participants’ evolutionary expla-

nations pertain to the scientifically established causal ele-

ments used to explain evolutionary change via natural

selection (see above). The coding rubric was used to

identify the presence or absence of seven Key Concepts

(KC) of natural selection in each of the students’ three

essay responses (see above). Recall that three of these KCs,

because of their special importance to the theory of natural

selection, are denoted as Core Concepts. Overall, then, a

matrix of 7 concepts 9 3 items was constructed.

Two expert scorers independently coded the essay

responses for the presence or absence of the KCs using the

scoring rubrics. Rater 1 holds a Ph.D. degree in evolu-

tionary biology, has conducted evolutionary research,

published articles in the primary scientific literature on

evolution, and has taught biology for [10 years. Rater 2

holds a M.S. degree in Zoology and a Ph.D. in science

education and has taught biology for [10 years. Both

scorers discussed, modified, and finalized the rubrics after

several episodes of practice scoring. Subsequently, all

scoring was performed independently (these scores are the

focus of our study).

The CAS System: SPSS Text Analysis

While many CAS systems are now available for use (see

above), we focused on one of the least expensive com-

mercially available products: SPSS Text Analysis 3.0

(subsequently: SPSSTA). Because a complete user’s guide

for SPSSTA is available (SPSS Inc. 2006), in the interest of

space we only provide a very condensed description of how

the program works. Readers interested in the nuances of

program function are encouraged to consult the user’s

guide. In brief, SPSSTA uses linguistic-based techniques to

identify, extract, and classify text. Such classifications are

based upon semantic networks and text co-occurrence

patterns. SPSSTA was designed to analyze short, open-

ended responses. The best results have been obtained with

single words or a few sentences, although responses may

be as long as 4,000 characters. Analyses of these responses

are based on a combination of linguistic and statistical

extraction techniques. Text analysis involves the identifi-

cation of equivalent classes of terms; locating synonyms of

such term classes; indexing and grouping terms; and find-

ing distribution patterns in the responses (SPSS Inc 2006).

Improving the efficacy of automated extraction can be

achieved by changing the programming rules, which we

discuss below.

Programming SPSS Text Analysis

Some researchers using SPSSTA report successful auto-

matic text extraction using the large term library that is

provided with the program (Galt 2008). However, in the

present study such ‘‘automatic’’ extractions could not be

performed for two reasons: First, the term libraries pro-

vided with the program did not include verbs or most

biology terms relating to evolutionary biology (e.g.,

mutations, recombination in meiosis, etc.). Second, auto-

matic categorization was not able to differentiate between

some KCs and evolutionary misconceptions (e.g., the term

‘‘adapt’’ may refer to either a correct or incorrect concep-

tualization of evolutionary processes). We therefore used a

dataset of 812 essays to manually develop more expansive

term libraries, program extraction rules, and calibrate the

software.

Methodologically, Rater 1 (see above) initially used a

previously developed rubric (Nehm et al. 2010a, b) to

identify and manually extract text from student responses

that were considered representative of each of the seven

KCs of natural selection. He then copied and pasted this

text into the corresponding rubric cell for each of the three
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essay items about evolutionary change using Microsoft

Excel. Rater 2 (see above) scored a subset (n = 100) of

these essays. Inter-rater reliabilities (Kappa values)

between the two human expert raters were [0.80 for all

seven KCs, indicating that the first rater’s results were

appropriate and could be replicated. At the completion of

scoring 812 responses, the Excel spreadsheet contained

columns of text characteristic of each of the seven KCs.

KC1, for example, included words and phrases culled from

many responses, such as:

‘‘genetic mutation, mutation, mutations, random

mutation, mutation for a faster running speed, fast

genes, gene for becoming quicker, genes that make

them faster, genetic variation provided for faster

running, some that were slightly different, variation

within the population…’’

The key words and phrases identified by Rater 1 were

subsequently used to build term libraries and relationship

functions in SPSSTA. The first step involved building a

library in SPSSTA that included all of the appropriate sci-

entific and common language terms used by students that

were lacking in the default SPSSTA libraries (i.e., all the

text that Rater 1 extracted and that could be helpful in

creating extraction rules). Including the inflections of verbs,

433 terms needed to be added to the SPSSTA library. These

terms were then grouped into so-called types. One type may

contain one or more terms. An example of a type is ‘‘abil-

ities’’ which includes the terms e.g. ‘‘fast’’, ‘‘blind’’, ‘‘fight

antibiotics’’, ‘‘fitness’’ or ‘‘resistance’’, etc. Using more

types is useful, as it may assist in the creation of more

specific and elaborate text extraction rules (see below).

After embedding the terms and types into the SPSSTA

library, it was then possible to extract such terms and types

from the 812 student responses that were imported into the

SPSSTA program. Once extraction was performed, all of

the terms that were included in the library were highlighted

in different colors in all of the student responses in the

sample. At this point, the library had been augmented and

term extractions had been completed. The next step was to

define and build text categories.

For our study, each of the KCs was represented as a

separate category in SPSSTA. There are three possible

approaches for creating a category in SPSSTA: (1) One or

more individual terms may be used to define the category;

(2) One or more types may be used to define the category;

or (3) Combinations of different types and/or terms may

define the category. Using HR1’s extracted text for each

key concept, it was in some cases obvious that single terms

were sufficient for representing a KC (e.g. ‘‘mutation’’ was

indicative of KC1). In other cases, a group of very similar

terms was used to indicate a specific Key Concept (e.g.

different synonyms for ‘‘reproduce,’’ such as ‘‘multiply,’’

‘‘propagate,’’ etc.). In such cases, the category included a

type. Differentiating types and terms is of practical

importance; in the library the types are used to organize,

condense, and group terms. If a type is included in a cat-

egory, then if a new term is added into this type SPSSTA

will automatically extract it and add it to the category.

In most instances, combinations of types and terms were

used to create categories. Equation 1 illustrates a very

simple example in which one term was not sufficient to

extract a KC; thus, combinations of different terms and

types were needed. These combinations are called rules in

SPSSTA. A rule is built using terms, types (indicated

through \[), and the operators AND [&], OR [|], NOT

[*], and BRACKETS [()] (see Eq. 1, below).

\kc2 1 spreading[ \kc6 1 reproduce[j joffspringð Þ
&\abilities[& will & also & beð Þ can & do & sameð Þj jð

same jwith thisð Þ& ability traitj j\abilities[ð Þð ÞjalreadyÞ
ð1Þ

In order to further clarify rule functioning, we provide

several examples to illustrate how they work. We use Eq. 1 as

the example. The text in the student answers that is relevant to

rule application is shown in bold. After each answer, the parts

of the formula that relate to the bold text are explained in

italicized text. The formulas should be compared with Eq. 1

to see how the AND and OR operators, as well as the

brackets, are used to constrain searches for specific text

combinations within students’ answers. The student answers

we use as examples are from the three different items. This

explains why types have been used: the same rules may be

used in very different prompt responses.

Answer 1 (Bacteria item): ‘‘There are some bacteria that

survive the antibiotics which split off to make more bacteria

that will also be resistant to the antibiotic.’’(‘‘make more’’ is

a term in the type \ kc2_1_spreading [) & ‘‘resistant is a

term in the type \ abilities [ & ((will & also & be)).

Answer 2 (Cheetah item): ‘‘Over the generations the

cheetahs evolved to better respond and live in their envi-

ronment. In order to survive and catch prey, the heritable

trait of speed was better suited for the environment. The

cheetahs with this trait reproduced and were more fit than

cheetahs that were not as fast.’’(‘‘reproduce’’ is a term in

the type \ kc6_1_reproduce [) & ‘‘speed’’ and ‘‘fast’’ are

terms in the type \ abilities [ & ((with this) & (trait)).

Answer 3 (Salamander item):’’When their ancestors

changed their environment to the cave, perhaps the ones that

already had poor vision (but whose other senses like hearing

were heightened) could survive better. Those reproduced

with the genes for poor vision but better hearing until today,

where cave salamanders can no longer see.’’(‘‘reproduce’’

is a term in the type \ kc6_1_reproduce [) & ‘‘see’’ is a

term in the type \ abilities [ & (already).
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We created our text extraction rules a posteriori; that is,

they were identified using the corpus of text built by Rater

1. (It is also possible to develop rules a priori, but we did

not do so). Formulation and finalization of extraction rules

is an iterative process. After examining HR1’s text, pos-

sible rules were built and text was extracted accordingly.

After the extraction, the results were compared with HR1’s

scores. Similarities and differences were examined, rules

were refined, and correspondence was examined. It is

important to note that the categories were the same for the

three assessment items (bacteria, cheetah, salamander); that

is, the category KC1 included exactly the same terms, types

and rules for the bacteria, salamander, and cheetah items.

Rule-building was quite complex; preparing the rules

required examining correspondences among three items

and seven KCs. Overall, the SPSSTA default libraries are

not sufficient for automatic text extraction; terms, types,

and categories must be identified, and rules must be built

using terms and types. Once complete, the efficacy of these

‘‘training’’ rules may be tested against human scores. After

sufficient levels of agreement have been reached, the pro-

gram has been ‘‘trained’’ and is ready to be tested using

new data sets.

Measures of correspondence among human

and computer scores

Measures of inter-rater agreement between human raters

are typical metrics for testing score comparability (Chung

and Baker 2003:28; Krippendorff 2004: 246–249). The

same approach may also be used to test for human–com-

puter correspondence given that it too attempts to identify

the presence or absence of a particular knowledge element

(i.e., a Key Concept). Agreement may be quantified using

the percentage of exact or adjacent agreements between

CAS scores and human expert-generated scores. As noted

above, ‘percentage agreement’ statistics are problematic

because they are sensitive to the number of cases analyzed

(Yang et al. 2002). Consequently, Cohen’s Kappa com-

monly has been employed to quantify levels of agreement

between CAS scores and expert scores because it com-

pensates for chance inter-rater agreements (Bejar 1991).

Kappa values range from 0.0 to 1.0.

A review of the literature revealed that several different

inter-rater agreement benchmarks have been established

using the Kappa statistic. Landis and Koch (1977), for

example, considered inter-rater agreement values between

0.61 and 0.80 to be ‘‘substantial’’ and those between 0.81

and 1.00 to be ‘‘almost perfect.’’ Krippendorff (1980)

likewise followed this latter benchmark in his well-known

guide to content analysis. In contrast, other authors con-

sidered inter-rater values greater than 0.60 to be indicative

of acceptable and meaningful agreement (e.g., Shermis and

Burstein 2003; Altman 1991). On the other hand, Fleiss,

Levin, and Paik (2003) describe Kappa values higher than

0.74 as ‘‘excellent’’ and values lower than 0.41 as ‘‘poor.’’

Given the diversity of benchmarks established in the lit-

erature, and the lack of normative or theoretical justifica-

tions for such benchmarks, there is no clear consensus on

the matter. For our study, we will follow the benchmarks

introduced by Landis and Koch (1977), and echoed by

Krippendorff (1980): Cohen’s Kappa values between 0.41

and 0.60 are seen as moderate, between 0.61 and 0.80 are

considered substantial, and between 0.81 and 1.00 as

almost perfect.

In some cases, the marginal score totals were insufficient

for calculating Kappa values; in these cases, Yule’s Y is

reported (Spitznagel and Helzer 1985). Yules Y values are

similar to Kappa values in that 1.0 represents the highest

possible agreement. Given that Yule’s Y has a similar scale

as Kappa, we use the same benchmarks as those introduced

by Landis and Koch (1977, see above). In cases of multiple

agreement comparisons, we employed interclass correlation

coefficients (ICCs). The ICC is used as a test for inter-rater

reliability between (or among) two or more variables (Field

2009); therefore, it allows analyses of the agreement among

multiple raters. Other indices only permit pair-wise com-

parisons. The same benchmark categories were used as in

Kappa and Yules’s Y, although it is important to note that

reaching an ICC of 0.80 is slightly more difficult than

reaching a kappa of 0.80 (Field 2009). We used SPSS 16.0

and Microsoft Excel to calculate all Kappa values, Yule’s Y

values, ICCs, and correlation coefficients.

Human–Computer Agreement and Analysis Grain Size

As noted above, both construct attributes (e.g., the partic-

ular key concepts of natural selection that we identify) and

scale (e.g., individual or total key concepts within or

among items) are important considerations that must be

attended to in the interpretation of computer–human cor-

respondence scores. Given that we used three different

items (bacteria, cheetah, salamander) in a pre-post-test

design, and seven Key Concepts (and three Core Concepts)

were scored for their presence or absence, there are several

different grain sizes at which we may analyze the corre-

spondence between human and computer scores.

Key concept scores were tallied separately for each

item, and collectively for all three items, both pre- and

post-course. In addition, the number of different key con-

cepts used among all three items (hereafter: Key Concept

Diversity) was scored for each participant. Given these

items and response patterns, many different analyses of

human–computer score agreement are possible. Conse-

quently, we perform five different tests of human–com-

puter score agreements (referred to as analyses 1–5).
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Analysis 1

The first analysis is a fine-grained study comparing inter-

rater (human–computer) agreement for each of the seven

KCs for each of the three different essay prompts (Bacteria,

Cheetah, and Salamander) pre- and post-course. This

analysis tested whether the SPSSTA extraction rules (see

above) could detect KCs 1–7 with equal fidelity as the

expert human rater. First, pre and post responses for each

item were analyzed separately. Second, pre and post

answers for each item were analyzed together. As noted

above, Kappa was used to statistically test correspondence.

Analysis 2

The second analysis explored the measurement of inter-

rater agreement (human–computer) for each KC in a

sample combining all 812 essays. The extraction rules used

in this analysis were identical for all three prompts

(Bacteria, Cheetah, and Salamander). This analysis is

informative because while human raters may use distinc-

tive criteria for the scoring of KCs for each prompt (e.g.,

bacteria, cheetah), the SPSSTA rules in this case do not.

Thus, this analysis indirectly tests whether the superficial

item features (e.g., type of organism and its physical/

environmental and temporal context) are relevant factors in

the scoring of evolutionary explanations. This analysis also

tackles a problem identified in the first analysis (above),

namely the low marginal totals for some KCs (i.e., par-

ticular KCs were mentioned very infrequently by the stu-

dents in the sample). Thus, this analysis bolsters sample

sizes for our statistical tests.

Analysis 3

The third analysis explores the measurement of the inter-

rater agreement (human–computer) for Key Concept

Diversity (KCD). Recall that KCD is a measure of the

number of different Key Concepts (KC) of natural selection

employed by students among the three essay prompts (pre-

or post-course). Thus, this measure quantifies the number

of different accurate explanatory elements that an indi-

vidual student uses. This measure may be thought of as the

complexity of students’ accurate natural selection models

(within the confines of the instrument tasks). KCD is also

the coarsest measure of natural selection knowledge; even

if, for example, we were to find that the inter-rater reli-

abilities for single KCs (e.g., Analyses 1 and 2 above) do

not approach ‘‘near perfect’’ Kappa values, KCD—because

it is not as fine-grained of a measure—may in fact meet this

benchmark. If all individual KC inter-rater agreements

match this Kappa benchmark, then of course KCD mea-

sures will also display high values. In other words, if

analyses 1 and 2 fail to match our human rating bench-

mark, they may nevertheless function effectively for KCD

measurement.

Analysis 4

The fourth analysis examines human–computer agreement

for the three Core Concepts (CC) of natural selection. Note

that these three particular Key Concepts (KCs) are con-

sidered by many evolutionary biologists to represent the

necessary and sufficient elements of an explanation using

natural selection (e.g., Nehm et al. 2010a, b; Lewontin

2010). Other evolutionary biologists, however, often sub-

scribe to a much more expansive definition of natural

selection that encompasses all or most of the Key Concepts

(KCs). Given the uncertainty regarding the exact bound-

aries of the construct of natural selection (that is, whether

KCs or CCs best describe the content we are attempting to

measure), we analyze whether the measurement of student

knowledge by our human experts and computer software

functions with equal fidelity under the two different con-

struct definitions.

Analysis 5

Our final analysis expands upon our previous compositional

analyses and explores how individual KCs are packaged

into explanatory structures. That is, we explore KC asso-

ciation patterns among items and among human and com-

puter raters. These analyses may be considered holistic

snapshots of students’ assemblies of KCs into meaningful

explanations. We measure KC co-occurrence patterns using

Spearman correlation coefficients and represent these pat-

terns visually in a new type of visual display.

Results

Software Training Analysis 1

Analysis 1 revealed that the functions (or extraction rules)

developed and deployed in Text Analysis 3.0 (see above)

matched or exceeded inter-rater agreement values of 0.81

(‘‘almost perfect’’) in the vast majority of cases for indi-

vidual Key Concepts (KCs) for all three item prompts both

pre- and post-intervention (see Fig. 1). The SPSSTA pro-

gram was able to detect the presence of KCs in a compa-

rable manner as the expert human rater; the program also

agreed with the expert human rater regarding the absence

of KCs in the vast majority of cases. The weakest corre-

spondence between SPSSTA and the human rater was

noted for KC7 (A shift in the generational genotype/phe-

notype distribution).
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Software Training Analysis 2

The second analysis explored the measurement of human–

computer correspondence for each Key Concept (KC) in

the combined sample of all 812 essays. Here we found

outstanding correspondence, with the exception (as also

noted in the first analysis, above) of KC7. Cohen’s Kappas

were: KC1 (n = 199, k = 0.939, p \ 0.01), KC2

(n = 256, k = 0.882, p \ 0.01), KC3 (n = 17, k = 0.971,

p \ 0.01), KC4 (n = 7, k = 0.933, p \ 0.01), KC5

(n = 174, k = 0.954, p \ 0.01), KC6 (n = 430, k =

0.768, p \ 0.01), and KC7 (n = 153, k = 0.757, p \
0.01). These results indicate that the functions (or extrac-

tion ‘rules’) that we generated in SPSSTA are broadly

applicable to different evolutionary scenarios (i.e., bacte-

rial resistance, cheetah running speed, and salamander

vision loss). This result is encouraging, as it suggests that

the development of new prompts may not necessitate the

development of new Lexical Analysis (LA) rules.

Software Training Analysis 3

The third analysis explored the inter-rater reliability

(human vs. computer) for Key Concept Diversity (KCD),

which is a measure of the number of different Key Con-

cepts of natural selection that were employed by students

among their three essay prompts. An Inter-Class-Correla-

tion (ICC) analysis for pre- and post-course responses

(n = 122) revealed high and significant correspondence

between human and computer scoring (ICC [2,1], 0.914,

F121,121 = 22.77, p \ 0.01). Given the promising results in

the previous two analyses, it is perhaps unsurprising that

this coarse-grained analysis produced the highest magni-

tude of human–computer agreement. Overall, these results

indicate that SPSSTA is able to grade large numbers of

evolutionary responses and produce measures of the com-

plexity of accurate evolutionary elements in undergraduate

biology students’ explanations that are comparable to those

derived by an evolutionary biologist.

Software Training Analysis 4

The fourth analyses explored whether a different construct

conceptualization (that is, using Core Concept Diversity

instead of Key Concept Diversity) had any impact upon

human–computer agreement. An Inter-Class-Correlation

(ICC) analysis of core concept diversity for pre- and post-

course responses (n = 122) revealed high and significant

Fig. 1 Inter-rater agreement between Human Rater 1 scores and

SPSSTA scores for the seven key concepts of natural selection using

Cohen’s Kappa (Bacteria n = 364, Cheetah n = 224, Salamander

n = 249). All correlations are significant (p \ .001) and approach or

exceed the Kappa benchmark of 0.80. KCs are: (1) The presence and

causes of variation (mutation, recombination, sex); (2) The heritabil-

ity of variation; (3) competition, (4) Hyper-fecundity or ‘overpro-

duction’ of offspring; (5) Limited resources; (6) The differential

reproduction and survival of individuals; and (7) A change in the

distribution of produced phenotypic/genotypic variation in the next

generation

Fig. 2 Key Concept co-occurrence patterns between the expert

human rater and SPSSTA. See Fig. 1 caption for KC descriptions
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correspondence between human and computer scoring (ICC

[2,1], 0.936, F121,121 = 30.26, p \ 0.01). Thus, regardless

of construct definitions, human–computer agreement was

high and significant. Further, regardless of whether the

scorer was a computer (SPSSTA) or a human (HR1), CCD

was highly and significantly correlated with KCD in all

comparison cases (Pearson r [ 0.80, p \ 0.01). Thus, both

construct measures are significantly and highly correlated,

and human–computer scoring produced comparable mea-

sures of both CCD and KCD.

Software Training Analysis 5

In addition to our statistical analyses of correspondence

patterns, we developed a new graphical organization

technique for visually displaying how the key concepts

extracted from responses using different methods (i.e.,

human and computer) are structured. This method provides

a visual snapshot of both the abundance and co-occurrence

of different key concepts in a dataset for each assessment

item. Figure 2 illustrates score patterns derived from the

human raters and SPSSTA. It is apparent that while the

overall structures of knowledge are remarkably similar,

differences may also be noted. For example: As the human

expert and SPSSTA differ in the abundance of KC 6 and

KC7 detected, the co-occurence between these two KCs

differs for the Cheetah and the Bacteria Item. Thus, while

highly concordant, these new graphical displays provide an

additional way to evaluate the correspondence of our CAS

system to expert human raters.

Testing The Efficacy of The Software with Expert

Human Scorers and a New Dataset

All of the software training analyses discussed above

produced strong and significant associations between the

scores produced by an expert human rater and the SPSSTA

software. Nevertheless, the SPSSTA extraction rules were

built using text manually extracted by the expert human

rather. A more important series of analyses are conse-

quently needed to explore whether: (1) the software per-

forms well on a dataset upon which the SPSSTA software

was not trained and (2) the trained software performs

effectively relative to an expert human rater who was not

involved in the rule development. Thus, the second set of

analyses that we report are tests of the efficacy of the

software on a new data set and compared to another expert

human rater and show whether the results are expert—and

dataset—independent.

As above, the inter-rater agreements were calculated

using Inter-Class Correlations, Cohens kappa or Yules Y

(see ‘‘Methods’’), but unlike above, three comparisons

were made instead of two: (1) Human Rater 1 vs. Human

Rater 2; (2) HR1 vs. SPSSTA; and (3) HR2 vs. SPSSTA.

For these analyses, each expert rater blindly scored 110

randomly chosen open-response answers for each of the

three items (bacteria, cheetah, and salamander). Specifi-

cally, 55 responses were randomly drawn from the pre-test

responses and 55 responses were drawn from the post-test

responses. Thus, a total of 330 responses were used in tests

of the efficacy of the software with expert human raters.

Software Testing Analysis 1

Our first analysis explores the efficacy of the extraction

rules established in the training of SPSSTA on the 2009

dataset (see ‘‘Methods’’). Specifically, we compare KC

scores for HR1, HR2 and SPSSTA separately for each of

the three assessment items (bacteria, cheetah, and sala-

mander) (See Fig. 3). The vast majority of agreements are

‘‘substantial,’’ with kappa values[0.60; only KC7 does not

meet this inter-rater agreement level. Additionally, for the

Salamander item and KC5, HR1 and HR2 agreement is

below 0.60. Key Concept 2 is a good example of the

interdependence of the SPSSTA results. As explained

above, in some cases it was not possible to create a single

set of rules that lead to sufficient agreement for all items.

Software Testing Analysis 2

It is also possible to examine KC correspondence across all

three items. As explained above, the categories and rules

used in SPSSTA are exactly the same across all items.

Therefore, the software does not differentiate between the

differing item features (e.g., salamander, bacteria, etc.).

Figure 4 provides an overview of the findings, which are

‘‘near perfect’’ in very many cases. All KCs reach a

‘‘sufficient’’ agreement except KC seven. Notably, poor

agreement between the human raters is also apparent in this

instance.

Software Testing Analysis 3

The third analysis explored inter-rater agreements among

HR1, HR2, and SPSSTA for Key Concept Diversity (KCD).

As there are seven possible Key Concepts (KC) in an essay

response, KC Diversity ranges from 0 to 7. Therefore, inter-

rater reliability was measured with Inter-Class-Correlations

(ICCs). An Inter-Class-Correlation (ICC) for all 110

responses revealed high and significant correspondence

between human and computer scoring and exceeded a value

of 0.80 (ICC [2,1], 0.857, F109,218 = 19.142, p \ 0.01).

Furthermore, there were no significant differences in KCD

among HR1, HR2, and SPSSTA (p [ 0.05 in all compari-

sons). Thus, these results indicate that Key Concept
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Diversity scores generated using SPSSTA are comparable

to scores independently generated by two biologists.

Software Testing Analysis 4

Similar to the third analysis above, the fourth analysis

explored the inter-rater agreements among HR1, HR2, and

SPSSTA for Core Concept Diversity (CCD). Recall that

these three core concepts of natural selection are consid-

ered to be the most important of the seven elements of an

evolutionary explanation in the professional literature on

evolution (Nehm and Schonfeld 2010). As such, they

warrant focused and independent analysis. As above, inter-

rater reliability for CCD was measured with Inter-Class-

Correlations (ICCs). This analysis, using all 110 responses,

revealed high and significant correspondence between

human and computer scoring and again exceeded 0.81

(ICC [2,1], 0. 858, F109,218 = 19.230, p \ 0.01). Thus,

similar to KCD results, CCD results also indicated that the

scores generated using SPSSTA are comparable to scores

Fig. 3 Inter-rater agreement for

all three items (bacteria,

cheetah, salamader) for all key

concepts (KC). Agreement

statistics include Cohen’s kappa

and Yules Y. HR1 human rater

1, HR2 human rater 2, TA
SPSSTA. All reported values

are significant at p \ 0.001. See

Fig. 1 caption for KC

descriptions

Fig. 4 Inter-rater agreement among Human Rater 1, Human Rater 2,

and SPSSTA for the seven key concepts of natural selection (KC)

using Cohen’s Kappa (n = 330). All correlations are significant

(p \ .001). Notably, KC7 scores do not meet benchmark targets. See

Fig. 1 caption for KC descriptions
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independently generated by two biologists. Finally, given

that KCD and CCD are different construct conceptualiza-

tions, Pearson correlation coefficients were used to compare

the two measurements among raters. For HR1, CCD

and KCD were highly and significantly correlated (n =

110, r = 0.898, p \ 0.01), as were those for HR2 (n = 110,

r = 0.894, p \ 0.01) and SPSSTA (n = 110, r = 0.896,

p \ 0.01). Thus, regardless of human or computer scoring,

CCD and KCD are strongly and significantly correlated.

Software Testing Analysis 5

In addition to our statistical analyses of correspondence

patterns, we visually displayed how the key concepts

extracted from responses using different scoring methods

(i.e., human and computer) are composed and structured.

This method provides a visual snapshot of both the abun-

dance and co-occurrence of different key concepts

extracted from the dataset. Figure 5 illustrates score pat-

terns derived from the two expert human scorers and

SPSSTA. It is apparent that while the overall structures of

knowledge are very similar, differences may also be noted.

It is interesting to note, for example, that co-occurrence

patterns for the salamander and bacteria items differ among

all three raters. The first human rater found more Key

Concepts in students’ answers to the bacteria item than the

second human rater. The second human rater also found

more co-occurrences among KCs for the Cheetah item than

did SPSSTA. Overall, however, the structures of student

explanations are concordant (Fig. 5).

Discussion

Over the past 40 years, numerous studies have demon-

strated the utility and efficacy of Computer Assisted

Fig. 5 Key Concept co-

occurrence patterns among

SPSSTA (TA), Human Rater 1

(HR1) and Human Rater 2

(HR2). See Fig. 1 caption for

KC descriptions
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Scoring tools relative to expert human raters, notably PEG

(Page, 2003), C-rater (Sukkarieh and Bolge 2008), E-rater

(Burstein 2003), and Intelligent Essay Assessor (Landauer

et al. 2001). Our study expands upon this growing body of

work by exploring the efficacy of a new CAS tool (SPSS

Text Analysis 3.0) and a never before explored content

domain—evolutionary biology. Our study employed a

large corpus of open-response data derived from a previ-

ously validated natural selection instrument (the Open-

Response Instrument of Nehm and Schonfeld 2008) to test

the efficacy of SPSSTA scoring relative to expert human

raters (that is, biologists with graduate training in evolu-

tion). At the outset, it is important to reiterate that our work

is anchored in the pursuit of formative diagnosis of student

thinking about natural selection, and this purpose must

frame our data, evidence, and interpretations.

Software efficacy relative to expert human scoring

Our five analyses of the correspondence between human-

derived and computer-derived measures of students’ nat-

ural selection knowledge produced consistent findings;

regardless of granularity (i.e., individual key concepts or

composite measures of key concept diversity) or construct

definition (core concepts vs. key concepts) SPSSTA

generated measures of student knowledge of natural

selection comparable to those generated by two trained

biologists, one of whom is an expert in evolution. In the

vast majority of cases, SPSSTA and human agreement—

measured using Kappa or Yule’s Y—met or exceeded the

benchmark of 0.8, which is considered very good or

excellent agreement (Landis and Koch 1977). Specifi-

cally, out of 282 human–computer comparisons, 42.9%

(N = 121) achieved outstanding agreement values

(Kappa [ 0.9); 64.9% (N = 183) achieved ‘‘near perfect’’

agreement values [0.8; 82.3% (N = 232) achieved

agreement values [0.7; and 89.4% (N = 252) achieved

agreement values [0.6. Given that the medical research

community considers Kappa values [0.6 to be acceptable

(Altman 1991), 89.4% of human–computer comparisons

met this benchmark.

Certain key concepts of natural selection were detected

with greater correspondence than others, however. Key

Concept 7, for example, displayed lower levels of agree-

ment not only between SPSSTA and the expert human

rater, but also between the two human raters. This suggests

that this particular concept may not be clearly conceptu-

alized or scored, and consequently the text extraction rules

may likewise be in need of refinement. This finding high-

lights the fact that extraction success is, perhaps unsur-

prisingly, dependent upon clear scoring criteria. It is

difficult, if not impossible, to build effective text extraction

rules using ambiguously circumscribed constructs.

In some instances, the frequency of student use of par-

ticular core or key concepts of natural selection in the

sample was very low (e.g.,\five). These very low case

numbers make it remarkably difficult to reach high agree-

ment levels, or draw any robust conclusions about the

efficacy of the software. Specifically, in some cases the

reported agreement is 100%, but this is simply a product of

both raters failing to find a key concept in the response set.

Therefore, such ‘‘almost perfect’’ agreement tells us only

that the rules used in SPSSTA do not overestimate the

number of key concepts. But it is not possible to conclude

in such cases that SPSSTA would in fact find the key

concept if it was present. However, the result was still

encouraging, as more than 73% of the agreements are

above a value of 0.70, or ‘‘substantial’’ (Cohen’s Kappa

and Yules’ Y, p \ 0.05). Surprisingly, the comparison of

the second human rater to the software resulted in higher

agreement than between the software and the first human

rater (on whose rating the rules were built in part I of the

study). The comparison between the two human raters

shows the difficulty of reaching a high agreement, as they

reach sufficient values for 33 of 42 comparisons.

Our findings are in line with prior work using other CAS

systems. In a study of the automated scoring of architec-

tural mental models, Williamson, Bejar and Hone (1999)

reported moderate to high Kappas (between 0.32 and 0.92;

mean of 0.53). For the E-Rater software, Powers et al.

(2001) reported Cohen’s Kappas of 0.85 between human

raters and 0.49 and 0.27 between the E-rater and two

human expert raters. As the authors note, these human–

computer agreement scores are significantly lower than the

usually reported agreement indices hovering above 0.80.

Chodorow and Burstein (2004) also used the E-rater system

but used it to judge TOEFL essays. They found a slightly

higher agreement between the human experts (0.56) than

between the E-rater and human rater comparison (0.53).

Wang, Chang and Li (2005) used Pearson product-moment

correlations (r) to measure the agreement between human

experts and a CAS system for open-ended problem solving.

They also reported higher agreement between the human

raters (.89) than between the human raters and CAS tools

(0.69–0.82; all correlations were highly significant).

Overall, much like our findings using SPSSTA to score

open-response evolution items, human–human agreement

is generally higher than or equal to CAS-human agreement.

From a formative and summative assessment perspec-

tive, the measurement of Key Concept or Core Concept

Diversity (KCD, CCD respectively) provides the broadest

measure of evolutionary competency (Nehm and Reilly

2007). KCD and CCD measure students’ abilities across

three items that differ in surface features (e.g., taxa, traits,

and change types) and in so doing provide students with

multiple opportunities to demonstrate their evolutionary
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knowledge. The KCD/CCD measures are calculated as the

sum of different KCs used across all items by one student;

they do not award more credit for the repeated use of the

same concept. Therefore, this measure indicates whether a

student is able to apply conceptual knowledge in a variety

of situations. The particularly high inter-rater agreement

between human experts and SPSSTA for KCD and CCD

demonstrates the broad applicability of the tool. Thus, our

results indicate that the best use of SPSSTA is a substitute

for the time consuming process of human scoring for this

particular assessment measure.

Importantly, our findings only apply to the scientific

elements of evolutionary explanations; that is, we did not

attempt to build term and type libraries or extraction rules

for naı̈ve ideas or evolutionary misconceptions (Nehm and

Reilly 2007). Given that many students build evolutionary

explanations comprised of assemblages of both accurate

(key concept) and misconception elements, it is important

to expand our current work to test whether comparable

success may apply to other explanatory elements. Overall,

however, our findings indicate that computer assisted

scoring of constructed-response evolutionary explanations

are comparable to human-generated assessment scores in

the vast majority of cases. Collectively, these findings

affirm our view that CAS may be a transformative method

for STEM assessment in general and natural selection

measurement in particular. This is of particular importance

given that several documented limitations characterize

extant multiple-choice natural selection concept invento-

ries (Nehm and Schonfeld 2008, 2010).

Assessing the composition and structure of scientific

explanations

Students’ ability to identify and assemble scientific infor-

mation into explanatory models is a core skill that is

receiving increasing emphasis in science education. The

newly proposed Framework for Science Education, for

example, has identified ‘generating and evaluating scien-

tific explanations’ as a central—but neglected—feature of

scientific literacy (Alberts 2010: 491). Constructed

response assessments, such as the ORI, were developed in

part to evaluate students’ abilities in this regard (Bishop

and Anderson 1990; Nehm et al. 2010a, b). CAS scoring

(performed using SPSSTA), coupled with new represen-

tational approaches for displaying students’ explanatory

models (e.g. Fig. 5), provides progress in this neglected

area of science assessment. No other instruments in the

domain of evolution assess the composition and structure

of student-built explanations.

Our comparisons of the composition and structure of

students’ explanatory models of evolutionary change gen-

erated by human and computer scoring revealed in a

majority of cases strong correspondence in terms of Key

Concept (KC) presence, abundance, and association (see

Figs. 3 and 5). They also revealed the KCs that were (or

were not) employed by students, as well as their relative

co-occurrences. For example, among all items, KC3

(hyperfecundity) and KC4 (resource limitation) were rarely

used by students; in the Cheetah item, however, KC5

(competition) and KC6 (differential survival) were

employed very commonly ([80%). Furthermore, these

diagrams visually document how parallel items differing in

surface features (i.e., bacteria, cheetah, salamander) are

associated with different explanatory structures among

items (e.g., compare Fig. 5 top and middle rows). Given

that CAS using SPSSTA produced explanatory structures

generally concordant with human scoring, our work dem-

onstrates that the complex task of representing students’

explanations of evolutionary change may be successfully

facilitated by SPSSTA. Further work identifying and

extracting causal language and linkages among concepts,

and visually integrating this information with our visual

diagram methods, would enhance our understanding of

students’ scientific explanations in the context of evolution.

It is important to note that an explanation composed of

exclusively correct (or scientific) explanatory elements

need not imply a correct explanatory structure. A response

including the Key Concepts (1) differential survival, (2) muta-

tion, and (3) heritable variation, for example, would be

scored by humans (and in most cases by SPSSTA) as

containing three Key Concepts (see the Key Concept rub-

rics of Nehm et al. 2010a, b). Nevertheless, these three

accurate elements could be arranged in an inaccurate

explanatory structure, such as: ‘‘The differential survival of

individuals caused mutations to happen, and these muta-

tions caused variation to be heritable.’’ Thus, analysis of

explanatory structure will typically require tests of struc-

tural accuracy as well as compositional accuracy.

Importantly, cases of compositional accuracy but

structural inaccuracy were not found to occur in our sample

or in our analyses of Key Concepts. However, as we

expand our work to encompass computer-based diagnoses

of both key concepts and misconceptions, we suspect that

this issue will become much more relevant and common.

Indeed, the co-existence of both Key Concepts and mis-

conceptions in student explanations is quite common; such

‘‘mixed models’’ are known to constrain the validity and

utility of existing concept inventories in science (Nehm and

Schonfeld 2010). It remains to be determined whether

SPSSTA equations may be built that are capable of reliably

distinguishing differences in more complex causal struc-

tures, such as mixed models. For whatever reason, in our

sample the co-occurrence of accurate Key Concepts (albeit

in different magnitudes, see Fig. 2) was also indicative of

structural accuracy.

J Sci Educ Technol (2012) 21:56–73 69

123



www.manaraa.com

Advantages of CAS of open-response evolution

assessments

CAS of open-response items has many conceptual advan-

tages over closed-response formats such as multiple-

choice; three that have been noted in the context of natural

selection assessment include more precise documentation

of: (1) which knowledge elements students consider to be

important to explain a phenomenon (as opposed to the

selection of a prescribed ‘‘either-or’’ menu of options);

(2) how knowledge recruitment is affected by the context

or situation represented in the item (such as bacterial

resistance to antibiotics, cheetah running speed, or sala-

mander vision loss, see Kirch 2008; Nehm and Ha 2011);

and (3) how students assemble and structure chosen

knowledge elements into an explanation (e.g., Figs. 3 and

5) (Nehm and Ha 2011). Currently, assessing these three

aspects of students’ evolutionary reasoning is limited in

scope because of the prohibitive time, money, and exper-

tise required to hand-score open-response evolution

assessments (such as the ORI). Thus, CAS tools such as

SPSSTA may be used to not only address the practical

constraints of grading open-response data (time, cost, etc.),

but leverage improvements in the quality of assessments

that attempt to assess student thinking about evolution and

natural selection (cf. NRC 2001) (However, see ‘‘Discus-

sions’’ of cost effectiveness below).

Several additional advantages characterize the SPSSTA

scoring system. The development of new assessment items,

for example, often necessitates significant changes in

scoring procedures, rubrics, coding manuals, and human

training. The type and category libraries built in SPSSTA,

however, are often of a general nature and need not be

fundamentally changed if item surface features are chan-

ged. For example, changing the ORI item features from

‘‘bacteria’’ to ‘‘roses,’’ and ‘‘resistance’’ to ‘‘thorns,’’ would

only entail a few changes to the SPSSTA term and type

libraries. These changes would be made within the SPS-

STA library, and the program would automatically alter all

rules and categories with only a few mouse ‘clicks’ (Galt

2008). As noted above, only two ‘types’ in our SPSSTA

library were item specific (n = 2/20, 10%). Our finding

that inter-rater reliabilities were ‘‘substantial’’ across dif-

ferent items (e.g., bacteria, salamander) using similar terms

and types, provides empirical support for the utility of

general rule-building approaches. Nevertheless, further

empirical work should be completed in order to test this

finding more rigorously. Overall, however, SPSSTA

appears to offer significant advantages in terms of the

practical necessity of updating the features of open-

response assessment items.

Formative assessment of student knowledge is an

important activity in school, university, and online

environments and is known to positively impact student-

learning gains (Wood 2004). Consequently, several tech-

nological tools have been developed for use in large

enrollment classes to perform rapid and meaningful for-

mative assessments, such as the well-known ‘clicker’

response systems (Caldwell 2007). While these clicker-

type response systems are often not limited to closed-

response items (e.g., multiple-choice), SPSSTA scoring

tools could be used to leverage rapid, automated scoring of

longer open-response answers about evolution in large

enrollment classes. Currently, open-ended answers are used

infrequently in lecture contexts because of the practical

problem of rapidly evaluating large response sets (which is

not a constraint for multiple-choice). Indeed, while open-

ended questioning is a common feature of classroom

instruction, such actions typically only permit the evalua-

tion of a few orally delivered student responses. In contrast,

SPSSTA, in concert with electronic student response sys-

tems, could be used to rapidly evaluate hundreds of open-

ended responses in a brief time, improving the validity of

formative assessment inferences (as a consequence of

having results from a larger sample). Finally, formative

assessment performed during online cognitive tutoring

sessions (cf. Koedinger et al. 1997) could leverage open-

response answers scored using SPSSTA to more efficiently

diagnose learning deficiencies and direct students along

appropriate branches of a learning trajectory. Thus, overall,

CAS tools such as SPSSTA may open many new avenues

for formative assessment in both classroom and online

learning environments.

A final advantage of using SPSSTA is that it may

potentially mitigate the myriad limitations of human

scoring, most notably inconsistent grading; conscious or

unconscious bias; fatigue; working memory overload;

discouragement or mood changes while scoring; and many

others (Shermis and Burstein 2003). These advantages are

not unique to SPSSTA, however, and may characterize

many types of CAS systems (e.g., IEA, PEG, C-rater, etc.).

Disadvantages of our approach to CAS

Several disadvantages characterize our particular approach

to automated text analysis. First, the domain that we

investigated (evolution and natural selection) was not well

suited to the off-the-shelf capabilities of SPSSTA 3.0.

Specifically, the software did not include the language

(scientific vocabulary or common verbs) necessary for

analyzing student responses about evolutionary scenarios.

Consequently, considerable expertise was needed to define

and build the term and type libraries necessary for text

extraction in the domain of evolutionary biology. In our

study, we needed to create a very large library composed of

approximately 450 terms and types (e.g., meiosis, genetic
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recombination, point mutation, adaptation, selection, etc.).

Term library construction required a considerable amount

of time (hundreds of hours) and expertise (Ph.D. training in

evolutionary biology). Nevertheless, the term and type

library may now be used, expanded, and refined by other

biologists and biology educators; the initial setup of such

libraries need only be completed once per subject or

domain. For domains that do not require specialized lan-

guage or verbs—unlike evolutionary biology—such

investments will not serve as a disadvantage to using

SPSSTA.

Our study utilized an a posteriori approach to the con-

struction of term libraries; that is, we compiled and sub-

sequently mined a large corpus of existing responses to

evolution prompts to determine which terms were likely to

be informative in our assessment tasks and useful as text

extraction rules. This strategy was costly, as it required

gathering a large corpus of text focusing on intuitive and

scientifically accurate explanations of evolutionary change.

A further limitation of our approach was that annotating

this corpus for text elements considered representative of

the construct being measured could not be completed by a

novice; hence, considerable expert time was needed to

identify and categorize the terms central to the diagnosis of

student thinking about evolution.

Given the aforementioned limitations, the question may

be raised as to whether using SPSSTA to automatically

score student explanations of evolution (or for that matter

other content areas) is cost effective given the time, money,

and expertise needed to use the program (e.g., purchase the

program, build term libraries, construct analysis rules, and

test the efficacy of the program, as we have done). Indeed,

would it be more cost effective to hire humans to exclu-

sively hand-score responses? While providing a general-

izable answer to this question is difficult given the

idiosyncrasies of our particular case, as well as uncertainty

concerning the final number of responses that will even-

tually be scored using our SPSSTA work, we have never-

theless attempted to do so. (Note that cost estimates are in

US dollars).

The cost of the SPSSTA program was approximately

$1,000.00. The time cost of expert work (e.g., learning the

program, building the term and type libraries, setting up

and performing the analyses, modifying the system, and

scoring the responses) was approximately 500 h. At a rate

of $50 per hour, for our study, the financial cost of SPSSTA

development is conservatively estimated to have been

$26,000.00. In our experience, a trained rater may score 30

responses in one hour. The cost of a trained expert rater

(including training time and preparation) may be estimated

at $20 per hour. Given these estimates, human scoring

would have cost significantly less than SPSSTA scoring

($541.00 vs. $26,000.00). While it is clear that SPSSTA

scoring is not cost effective at present, the institution at

which the present study took place enrolls nearly 9,000

students in its introductory biology program each year, and

if each student were to complete the three item instrument,

27,000 responses would need to be scored. This would

amount to a cost of $18,800.00 per year (assuming the

instrument is used only once). Thus, while initially not cost

effective, it is likely that the long-term benefits may far

exceed these start-up costs, especially if the rules and

libraries are used at more than one institution. Neverthe-

less, our individual case can only serve as a rough estimate.

Overall, now that much of the start-up work has been

completed, other researchers may readily expand upon and

refine our accomplishments in order to leverage more cost

effective scoring than characterized our present study.

The disadvantages that we note with the CAS methods

used in our study primarily pertain to the SPSS Text

Analysis software. Other methodological approaches, such

as machine learning, may also be used to leverage auto-

mated scoring and may not entail the costs that we out-

lined. That is, rather than having a human develop and test

the efficacy of particular analysis rules, machine learning

approaches may be used to analyze a set of human-scored

essays and ‘discover’ and save computational rules that are

predictive of human scoring (see, for example, Witten and

Frank 2005). Such machine learning approaches do not

require: (1) human identification of specialized terms and

language; (2) the development of term libraries; or (3) the

construction and testing of extraction rules. Thus, the costs

that we outline should not be generalized to all text analytic

approaches associated with computer assisted scoring

systems.

Finally, despite many advantages, open-response

assessments—regardless of whether they are implemented

using paper and pencil or electronically—have intrinsic

limitations that must not be ignored. Constructed response

instruments, such as the ORI, may be biased by students’

aversion to writing and consequent errors of omission. That

is, the format itself may constrain the valid measurement of

student knowledge. Further, poor writing skills may ham-

per clear communication, preventing both human and

computer scorers from recognizing the true extent of the

student’s knowledge; both situations will lead to inaccurate

knowledge measures. Thus, although we demonstrated

outstanding correspondence between human and computer-

generated scores, we did not demonstrate that these scores

were valid measures of student knowledge. Nevertheless,

prior work has indicated that the instrument we employed

in our study (the ORI) produced valid measures of student

knowledge of natural selection compared to oral interviews

(Nehm and Schonfeld 2008, 2010).
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Conclusions

Numerous psychometric constraints characterize extant

multiple-choice Concept Inventories of natural selection

and evolution (Nehm and Schonfeld 2008, 2010). Our

study of computer assisted scoring of constructed

response evolutionary explanations by biology under-

graduates demonstrated that: (1) text analysis tools (i.e.,

SPSS Text Analysis 3.0) may be used to successfully

diagnose fine-grained explanatory elements comprising

students’ mental models of natural selection as repre-

sented in open-response text and (2) text analysis

assessment scores are comparable to expert human-gen-

erated assessment scores in the vast majority of cases.

Collectively, these findings affirm our view that text

analysis may be a transformative method for STEM

assessment in general and natural selection measurement

in particular. Numerous disadvantages also characterize

our approach, however, and should be weighed carefully

relative to other text analytic strategies such as machine

learning. Our future research will leverage the advances

made in our term library expansion and rule generation to

tackle other knowledge elements common to student

evolutionary explanations—notably naı̈ve ideas or mis-

conceptions—and attempt to build more sophisticated and

holistic representations and measures of students’ evolu-

tionary thinking using computational tools.
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